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Wave-induced vorticity in free-surface boundary layers: 
application to mass transport in edge waves 

By B. D. DORE 
Department of Mathematics, University of Reading, Berkshire, England 

(Received 26 June 1974 and in revised form 6 January 1975) 

The time-averaged vorticity field within the free-surface boundary layer 
associated with a general class of propagating gravity waves is considered. The 
principal results are applied in a calculation of the mass transport velocity field 
for edge waves. 

1. Introduction 
The generation of a secondary time-averaged vorticity field within laminar 

boundary layers adjacent to oscillating free surfaces has been investigated by 
Longuet-Higgins (1953) in circumstances when the fluid motion is two-dimen- 
sional. For such motions, the value of this vorticity at the edge of the oscillatory 
surface layer is, in general, non-zero. Consequently, with reference to the time- 
averaged motion in the interior of the fluid, Longuet-Higgins (1960) noted that 
the presence of this boundary layer is equivalent to a mean tangential stress. 
Phillips (1966) and Longuet-Higgins (1969) made use of this equivalence in 
applications to progressive gravity waves in deep water. 

In  the present note, the generation of mean vorticity within the free-surface 
boundary layer is considered for a much wider class of gravity waves, comprising 
those which propagate in the sense described in $ 2 .  The calculation forms a 
generalization of that of Dore (1974), who considered two interacting wave trains 
propagating in arbitrary directions. In  a limiting case, the present results reduce 
to those of Longuet-Higgins (1953) for arbitrary two-dimensional fluid motions 
beneath an oscillating free surface. By way of application, we determine a solution 
for the mass transport velocity field associated with the propagation of a Stokes 
edge wave over a plane beach of arbitrary slope. Also, an approximate solution 
is given for edge-wave modes of higher order propagating over beaches of very 
small slope. 

2. Formulation 
We consider wave motion in a homogeneous incompressible fluid of finite, but 

not necessarily uniform, depth. The motion is first referred to a stationary system 
of Cartesian co-ordinates (x', y', z') having origin a t  the (local) mean level of the 
free surface and z' axis directed vertically upwards. 

Neglecting friction for the moment, we consider the fluid motion induced by 
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some propagating wave (of period 2 ~ 1 0 )  whose amplitude and phase functions 
are independent of and linear in x’, respectively. Henceforth, physical variables 
will be non-dimensionalized with respect to  c and k,  where 2n/k denotes the 
wavelength in the x direction. The motion, assumed irrotational, is described in 
terms of a velocity potential CD satisfying Laplace’s equation VZQ = 0. Further, 
CD is expanded in terms of an ordering parameter a, a measure of the maximum 
wave slope, as 

m 

= x y, 2, t ) ,  
n=l  

similar to  the expansion used by Stokes (1847). Then, for a free-surface displace- 
ment 

x, = a f (y )  eiQ-t) + O(a2),  

where f(y) may be complex valued, we have 

CD1 = #,(y, x )  eig-t) ,  

- i f ( y )  = a#,/az = +y1/q1c (2 = 0). 

(Wherever complex terms represent physical variables it is understood that only 
the real parts are to be taken.) To O(a2) ,  the mass transport velocity is given by 

a2Q1 = (9) + ((14 d t .  V) s>, 
where (4) denotes the time-averaged value of the velocity vector q at a point 
fixed in space. The second term on the right-hand side is denoted by a2Qs and 
is referred t o  as the Stokes drift velocity; thus 

where the asterisk denotes the complex conjugat,e. 

3. The free-surface boundary layer 
It is assumed that the quantity e-2 = c/2vk2, in which v denotes the kinematic 

viscosity, is a representative wave Reynolds number and is 9 1. Consequently, 
there is an oscillatory free-surface boundary layer of thickness O(E) .  For purposes 
of this section, it can be shown to be immaterial whether the wave motion is 
(a)  periodic in time, with a small spatial damping rate O(e) ,  ( b )  completely main- 
tained by the action of certain wind forces, which give rise to suitable surface 
stresses,? or (c) a free oscillation, decaying on the time scale O(e-l). However, 
with a view to applications to  steady-state calculations such as that made in $4, 
the free oscillation (c) must be disregarded, since the decay time is much shorter 
than the time scale (typically O ( c 2 ) )  needed for the establishment of a steady 
rotational velocity field O(a2) throughout the entire fluid. For definiteness, we 
shall refer to (b)  in the following description. 

t These may consist of normal stresses alone, or of normal and tangential stresses. But, 
in the latter case, the class of tangential stresscs would be chosen so that the results of 
equation (3.4) are unaltered. 
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Longuet-Higgins (1953) showed that, owing to the fluctuating position of the 
free surface and to the existence of the free-surface boundary layer, it  is necessary 
to use a special co-ordinate system in which the free surface is a co-ordinate 
surface if the wave amplitude is comparable with, or greatly exceeds, the 
boundary-layer thickness. In order that the present analysis of the layer should 
be valid for such amplitudes, we shall also introduce a suitable co-ordinate 
system. Thus the motion is first considered with respect to a frame of reference 
moving with unit velocity in the + x direction, and is steady relative to this frame. 
The equation for the vorticity o = curl q becomes 

curl (q x o) = +e2 curl curl o. (3.1) 

Within the free-surface layer, the dynamical equations are then considered in 
terms of a (non-orthogonal) curvilinear co-ordinate system ( t , ~ ,  g), which is of 
a more general form than that employed by Dore (1974). We write 

2 

n = l  
g = x- z ananw,  y, z) ,  

'I = y+iaa@,/ay+O(az), 

g = 2 - ia a@.,/& + O(aZ), 

where X = x - t .  The [surfaces are chosen here to coincide with the equi-potential 
surfaces of the (inviscid) wave motion. Terms up t o  O(a2) in the expansions for 
7 and < are chosen such that (i) normals to 5 surfaces are orthogonal to normals 
to both 5 and y surfaces and (ii) the position of the free surface is represented by 
5 = 0. Then, to O(a2), 5 surfaces are stream surfaces of the inviscid motion. 

A boundary-layer variable Z = </e is now introduced, and the vorticity vector 
is expanded in the form 

o = ~ a ~ e k o j , < ( ~ , ' I , Z )  ( j =  1 , 2  ,... ; I c = O , l ,  ... ). 
i, k 

Equation (3.1) is then considered to O(a j ) , j  = 1,2,  as described by Dore (1974). 
The vorticity vector is written as 

o = w5i5.+w7i7+w5i5,  

where i,, etc., are unit vectors parallel to the co-ordinate curves, and averages 
with respect to f; are denoted by W E ,  etc. The equations for wtZO and wV2,,, when so 
averaged, are readily integrated through the boundary layer, and give 

where J = a(<,q,<)/a(x, y,z) and h,, etc., are the Jacobian and scale factors of 
the co-ordinate transformation, respectively, and Z = Z, represents the edge of 
the layer. Now the condition that the free surface is subject to no tangential 
stress reauires that 

This condition can be conveniently expressed by writing q = - Vc + 4 (where 
ij is rotational) and using the property that the shape of the free surface is given 
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by the inviscid theory. After making use of expressions for the vorticity com- 
ponents in curvilinear co-ordinates, application of the condition yields 

with an equation of similar form for [i37,z0]z=0. The values of the left-hand sides 
can thus be found in terms of the co-ordinate transformation and the linear 
vorticity field wI0. Then, from (3.2)) the values 

r~,,oIz=z, = 8[W@l,. V@.,*,)lazl,=, (3.4b) 

are found a t  the edge of the layer, in terms of the linear velocity potential Q1 of 
inviscid theory. Equations (3.4) represent boundary conditions for the rotational 
second-order motion outside the oscillatory boundary layers a t  the surface and 
bott,om. 

Hean vorticity. The linear periodic vorticity field o1 vanishes a t  the edge of 
the free-surface boundary layer. We therefore deduce the time-averaged values 

( 3 . 5 ~ )  b )  

for t,he horizontal Cartesian components (correct to O(ct2)) of the wave-induced 
vorticity field a t  the edge of the surface layer. (The corresponding vertical com- 
ponent (w,) can be calculated a.fter the solution for (9,) has been determined 
in the whole fluid.) These values arc essential in any attempted calculation of the 
time-averaged motion of individual elements t.hroughout the fluid. With refer- 
ence to  the mass transport velocity, we may obtain the relations 

( 3 . 6 ~ )  

(3.6 b )  

provided that spatial rates of change just beyond the oscillatory layer are O(1) or, 
in other words, that no second boundary layer, adjacent to the oscillatory layer, 
exists. The first relation is a generalization of those obtained for long- and short- 
crested progressive waves by Longuet-Higgins (1953) and Dore (1974), respec- 
t,ively. The quantity 

vanishes in many applications (see, for example, $4 below), but is in general 
non-zero when surfaces of constant phase are not vertical, as occurs in the case 
of surface-wave propagation in water of variable depth (see, for example, Keller 
1958). 

When a suitable modification is made to the non-dimensional scheme, a calcula- 
tion similar to that described above may be carried out and the limit k + 0 taken. 
Equations identical with (3.5 a) and (3.6 6 )  hold for the resulting two-dimensional 
motion of arbitrary oscillatory form, and agree wit'h the work of Longuet-Higgins 
( I  933). 

Wave-induced mean effects of oscillatory boundary layers on the interior fluid 
have been discussed by Longuet-Higgins (1 953), who considered two-dimensional 
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motion in fluid bounded by both free and fixed surfaces. The above formulae 
(3.4)-( 3.6) are complementary to those calculated for fixed two-dimensional 
boundaries by Hunt & Johns (1963). At the edges of the layers, values O(ct2) of 
the tangential components of the mean velocity and mean vorticity are predicted 
in the cases of fixed boundaries and (clean) free surfaces, respectively. Such 
values represent boundary conditions imposed on the mean motion outside the 
oscillatory boundary layers. To determine this motion, it is generally necessary 
to require that a < E if complications arising, for example, from secondary 
boundary layers (adjacent to the oscillatory layers, and suggested by Stuart 
1966) are t o  be avoided. With this restriction on wave amplitude, solutions for 
the mean motion may be sought in terms of the conduction equation, analogous 
to that of Longuet-Higgins (1953)) in which the steady vorticity field O(a2)  has 
been established predominantly through the medium of viscous conduction. 
With reference to Cartesian co-ordinates, the vorticity equation then yields 

curl curl curl (q2J = 0. (3.7) 

Before considering a specific example, it should, however, be pointed out that the 
mean motion in the interior fluid may, in a wider context, be only weakly deter- 
mined by viscous conduction of vorticity. For instance, in a rotating fluid, this 
motion is dominated by Coriolis forces if the Ekman number is small, and the 
constraints imposed on the mass transport velocity field by even remote 
boundaries override viscous effects; moreover, in an inhomogeneous fluid, mean 
vertical motion of fluid elements is inhibited by the stratification. 

4. Application to edge waves 
As an application of the results of § 3, we first consider the case of a Stokes edge 

wave propagating in the +x direction over a plane bottom x = -ytaiip 
( 0  < /3 < 4~). For this wave, 

CT* = gk  sin /3 and we assume that ct < p. The Stokes drift velocity is everywhere 
in the direction of wave propagation and is given by 

U, = (~in~P)-~exp[-2(ycosp--xsin/?)]. (4.2) 

Thus, according to inviscid theory, the time-averaged particle paths are straight, 
and parallel to the x axis. The Stokes drift velocity has been calculated for more 
general progressive edge waves by Kenyon (1969)) who assumed that /3 < 1 and 
used a hydrostatic approximation. His calculation was partially motivated by 
a suggestion of Ursell (1952) that nonlinear effects might be important for edge 
waves. Indeed, in a rather extreme oceanic situation, Kenyon found that the 
value of the long-shore drift velocity near the shoreline could be about 15 cm/s for 
Stokes’ edge wave. 

For standing edge waves in viscous fluids, the mass transport velocity in the 
bottom boundary layer has been considered by Bowen & Inman (1971), who 
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proposed a possible explanation of certain rhythmical sedimentary features on 
sloping beaches. No calculations of the complete mass transport velocity field 
appear to exist for edge waves in viscous fluids, although this topic was also 
mentioned by Ursell(l952). We now consider some aspects of this problem which 
result from the diffusion of mean vorticity through the whole fluid, and seek the 
solution of (3.7) for a Stokes progressive edge wave. 

Long-shore drift. It may readily be shown that (u2J is zero throughout the 
bottom boundary layer. In  terms of polar co-ordinates such that y = R cos x and 
z = R sin x, the relevant boundary-value problem in the y, z plane is 

V ~ ( u z o )  = constant (0 > x > -p) ,  
a(uzo)/ax = (2R/sinp)exp( -2Rcosp) (2 = 0), 

( u z o )  = 0 (x = -P ) ,  
where Vg = a2/aR2 + R-l alaR + R-2 a2/ax2 and the inhomogeneous boundary con- 
dition arises on account of the mean vorticity (wY2,,) a t  the edge of the surface 
layer. The solution which is finite a t  R = 0 and which tends to zero as R + co can 
be obtained, for example, by means of the Blellin transform. We find the alterna- 
t,ive representations 

2 cos (7rjy/2p)/; sn/za( 1 - s”/fl) exp ( - 2Rs cosp) ds 
s ’ (4.3) - 

p sin 2p 1 - 2s”’fl cos ( 7 r X / P )  + s2n’P 
( U Z J  = 

2R ( - 2R cos /3)n-1 sin n(P + x) 
12! cos np 

03 1 

- C { ( 2 R ~ o s ~ ) ~ ~ - ~ r ( - 1 ~ ~ ) c o s i ~ ~ )  , (4.4) 
m=O 1 

where ill = (2m + 1) 7r/2p. (If 2p/n is a rational number c/d, where c (odd) and 
d ( >  c) are positive integers with no common factor, the Mellin transform 
d ( ( u z 0 ) ;  s) has an infinite sequence of double poles a t  

s = - ( 2 f l -  l ) d  ( A T  = 1 , 2 ,  ...), 

and (4.4) must be modified accordingly.) The above representations yield 

(4R cosec 2p sin (p  + x) as R-+ 0. 1 
The mass transport velocity U, = (u2J + Us is everywhere in the direction of 
wave propagation, and by (4.3) is greater than the corresponding value of V,. It 
may be seen from (4.5) that U,decays algebraically as R-tco, in contrast to the 
exponential decay predicted by inviscid theory. I n  figure 1, the relative values 
of the long-shore drift velocity V, are presented for three locations for the case 
p = i 7 r .  The corresponding values given by inviscid theory lie between the lower 
two curves in the figure. For very small p, there is virtually no difference between 
the values of V, and Kassociated with Stokes’ edge wave (see $4.1 below). Within 
the bottom boundary layer, 

V, = U, = cosec2p(1 - 2e-Z cos 2 + e - z z )  e-29 (2 = 2/e), 
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FIGURE 1. Values of U, in a Stokes edge wave (p = tn) for fluid particles near the free 
surface (solid curve), a t  mid-depths (dot-dashed curve) and just above the bottom 
boundary layer (dashed curve). 

and is everywhere in the direction of wave propagation. The co-ordinates f) and 2 
are measured along and perpendicular to the bottom 2 = 0. 

Mass transport in transverse planes x = constant. It is found that the Stokes 
drift velocity is everywhere zero, and that 

8 = (&,} = 2 cosec2/3( $ - e-Zsin 2 - & e - z Z )  e-@ 

within the bottom boundary layer. Outside the layers, the boundary-value 
problem for the mass transport velocity can be formulated in terms of a stream 
function Y(R,  x )  such that (qR2,,) = R-I aY/ax and (qX2J = - aY/aR. Thus 

h 

ViY = 0 (0 > x > -D ) ,  
(x = 0, - P ) ,  

a v / a x 2  = 0 (x = O),  

Y = 0 

aY/ax = icosec2PRe-2R (x  = -P ) .  
The solution which is finite at R = 0 and which tends to zero as R -+ co is readily 
obtained after application of the Mellin transform : 

a+im R sin ( s -  1)xsin (s + 1)p- sin (sf  1)xsin ( s -  1)p r(s) ds. y = - 
2:i/a-im m p  s sin 2p - sin asp (2R)S 

(4.6) 
I n  the first quadrant, the denominator has zeros a t  s = s,, where 

2n,n < 2Re(s,)p < (2n++)77 and Im(s,) + 0 (n = 1,2,  ...), 

There ma:y be a finite number of zeros, other than s = 0,1,  on the real axis, but 
this occurs only when /3 is very close to in. Excluding s = 1 ,  the zeros of the 
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denominator with smallest positive real part occur a t  s = sl, sT. We must there- 
fore take 0 < a < Re (sl), and find 

R 
sin2 p 

x cos x sin j3 - j3 sin x cos j3 
sin 2j3 - 2/3 

x sin 2j3 - j3 sin 231 
Y=-[ 

-R  sin 2p - 2j3 cos 2j3 

1 ( - 2R)" sin (n  + 1) x sin (n - 1) ,8 - sin (n - 1)x sin (n  + 1) j3 
+2  n=2 c 7 sin 2nj3 - n sin 2p 

sin (s, + 1 ) ~  sin (s, - 1)j3- sin (s,- 1)x sin (s, + 1)p 
sin 2J3 - 2,8 cos 2s,j3 

The radial component of Qz near the surface is therefore inwards for R < 1. For 
the distant field, asymptotic expansion of the Bromwich integral (4.6) yields 

R 
'P N -Re( 

sin2 j3 
sin (sl- 1)Xsin (sl+ 1)p- sin (a1 + 1)Xsin (sl- 1)p r(s,) 

2j3 cos 2s,P - sin 2/3 

as R-t co, so that the algebraic decay is oscillatory. The velocity field of the mean 
transverse flow therefore has an infinite sequence of stagnation points on the 
tinie-averaged level of the free surface, and dividing streamlines Y: = 0 cut a t  
right angles a t  these points, since (V$Y)x=o = 0. Streamlines contained between 
dividing streamlines passing through two consecutive stagnation points consist 
of a family of closed curves enclosing a further stagnation point in the interior of 
the fluid. 

The above analysis indicates that the time-averaged paths of the fluid particles 
are twisted curves lying on the cylindrical surfaces Y ( R , x )  = constant. For 
R < 1, the components of the mass transport velocity Qz in cylindrical polar 
co-ordinates are all O( 1);  but for R 9 1, the long-shore component dominates 
(except near the bottom), so that the particle paths in the distant field are 
(approximately) straight and parallel to the shoreline. 

4.1. The case j3 < 1 

Ursell (1952) showed that when p < 4. more than one mode of edge wave is 
possible. For /3 < 1, the velocity potential for the modes is obtained from the 
approximate result 

provided that r+/gk = j3(2n+ 1 )  < 1. The quantity &(A) represents the Laguerre 
polynomial of order n = 0, I ,  2, . . . , and Stokes' edge wave corresponds to n = 0. 
The Stokes drift velocity is given by Kenyon (1 969) as 

U, = e-2R[Lk2 + (L, - L3]ln=2R/[,8(2n + 1) n ! ] 2 ,  

where LA = dL,/dh. Calculations of the mass transport velocity according to 
viscous theory may be summarized as follows. 

Long-shore drift. Consistent with the assumption ,8 < 1, the boundary-value 
problem for (uzo) is (approximately) 

$1 = ( -i//3)Fn(2R)/(2n+ l ) ,  F,(A) = e-@L,(A)/n!, 

a2(uzO)/ax2 = 0 (0 > x > - l), 

a(u,,)/ax = 0 (X = O ) ,  

(u2,) = -3e-2R[L,(L~-Lk)],=2,/[j3(2n+ l)n!I2 ( X  = - I ) ,  
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where X = xfp. Thus (u2,,) is independent of x, and the mass transport velocity 
in the long-shore direction is given by 

V, = e-2R[LA2 + (L, - - 3L,( L: - LA)],=,,/[P(2n + I )  n!]2. 

For n = 0, U, = U, = e-zR//32. But for n >, I, the long-shore drift near the shoreline 
is considerably less than the corresponding value predicted by inviscid theory; 
far from the shoreline, viscous theory gives the larger value. 

Mass transport in transverse planes. The boundary-value problem for Y is 

av/ax4 = o (0 > x > - 11, 

( X =  0 )  -I), 
avpx2 = o ( x  = o), 
Y = 0 

aYfaX = P-lF(R) ( X  = - I), 
where 

and the solution is 

According to this, the streamlines of the mean transverse flow form a cellular 
structure, there being 2n + 1 cells associated with the nth mode. Those stagnation 
points which represent limiting closed streamlines are located on X = - 1/43, 
and occur a t  R = 0.5 (n = 0 ) ,  R ,N 0.32, 1-97,  4.22 (n = I) ,  ... . For n = 1, the 
boundaries of the cells are R = 8 and p. The sense of the circulation in the cell 
containing the shoreline is the same for all modes (the radial component of 
velocity near the bottom being in the down-slope direction). 

Remarks. The method of this subsection, based on the approximation p < 1 
and the assumption that radial rates of change of (uZJ and Y are much smaller 
than the corresponding azimuthal rates of change, does not accurately predict 
the distant field of Ql for any edge-wave mode. In  particular, the calculation fails 
to yield the algebraic decay of the long-shore drift and the infinite sequence of 
stagnation points on the free surface for the mean transverse flow. Although R 
and PR are the correct radial and azimuthal length scales for variations in(u,,) 
and Y a t  sufficiently small values of R, the approximate method fails when 
R $ I because the results of this section (together with similar considerations for 
n >, I )  show that PR is the appropriate scale for both radial and azimuthal varia- 
tions in the distant field. Moreover, application of boundary-layer theory breaks 
down near the shoreline R = 0, where the present results have little or no 
practical relevance. 

F ( R )  = Re-2R(&-L;) (L,- 6L;+bL:)/[(2n+ l)n!I2,  

Y = *P-”a(B) X ( X 2 -  1) .  

The author is grateful to the referees, whose constructive comments have led 
to a number of improvements on an earlier draft of this paper. 
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